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Abstract

This paper presents a high-order finite element method for calculating elastic-plastic flow
on moving curvilinear meshes and is an extension of our general high-order curvilinear finite
element approach for solving the Euler equations of gas dynamics in a Lagrangian frame
[1, 2]. In order to handle transition to plastic flow, we formulate the stress-strain relation
in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hy-
drodynamics with an additional evolution equation for the deviatoric stress which is valid
for arbitrary order spatial discretizations of the kinematic and thermodynamic variables.
The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D ax-
isymmetric and full 3D geometries. For each case, the strain rate is approximated via a
collocation method at zone quadrature points while the deviatoric stress is approximated
using an L2 projection onto the thermodynamic basis. We apply high order, energy con-
serving, explicit time stepping methods to the semi-discrete equations to develop the fully
discrete method. We conclude with numerical results from an extensive series of verification
tests that demonstrate several practical advantages of using high-order finite elements for
elastic-plastic flow.

Keywords: Elastic-plastic flow, Lagrangian hydrodynamics, High-order finite element
methods

1. Introduction and Motivation

The physical evolution of high velocity elastic, plastic and fluid motion can be generally
described by the Euler equations of compressible hydrodynamics. Typically, the Euler equa-
tions are used to model gas dynamics where the stresses are governed by a scalar pressure
field defined by an equation of state (EOS). With an appropriate definition of the stress ten-
sor and a material constitutive model, they can also be used to model complex shock wave
interactions with elastic-plastic materials [3, 4]. Our research is concerned with the solution
of these equations on general, unstructured 2D and 3D computational domains using high
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order finite element methods. We focus on Lagrangian numerical methods, where the equa-
tions are discretized and solved on a mesh that moves with the material velocity. As shown
in [1, 2, 5], high order Lagrangian methods result in curvilinear meshes which accurately
capture features of the material flow. Specifically, our goal is to solve the following system
of conservation laws:

Momentum Conservation: ρ
dv

dt
= ∇ · σ , (1)

Mass Conservation:
1

ρ

dρ

dt
= −∇ · v , (2)

Energy Conservation: ρ
de

dt
= σ : ∇~v , (3)

Equation of Motion:
dx

dt
= ~v , (4)

which involves the material derivative d
dt

, the kinematic variables for the fluid velocity v and
position x, and the thermodynamic variables for the density ρ, the (specific) internal energy
e and the total stress tensor σ of the material [6, 7].

A constitutive (or material) model is required to define the total stress tensor σ to the
state of the material, which includes the hydrodynamic variables ρ, e, v and x. In the simple
case of ideal gas dynamics, the total stress is an isotropic tensor defined by a scalar pressure
field σ = −pI which is determined by the equation of state

p = EOS(ρ, e) = (γ − 1)ρe, (5)

where γ > 1 is the constant adiabatic index of the ideal gas. In general, the EOS of a material
can be given in analytic form derived from theoretical and/or empirical considerations, or in
the form of experimentally determined tabulated data.

For elastic materials, the total stress tensor σ is no longer isotropic, but it is still desirable
to decompose the total stress into an isotropic component which is defined via the EOS and
a deviatoric component, denoted by s, resulting in a so-called material “strength model”

σ = −pI + s. (6)

The stress deviator tensor, s, is then treated as a new state variable whose evolution will
be described by an appropriate constitutive relation. The tensor s is symmetric and has the
following set of invariants:

J1 ≡ Tr(s) = 0 , (7)

J2 ≡ −1

2

(
Tr(s)2 − Tr(s2)

)
=

1

2
Tr(s2) , (8)

J3 ≡ det(s) . (9)

Because the stress deviator tensor is traceless via (7), it describes a state of pure shear [8].
There is a wide range of mathematical models aimed at describing the behavior of ma-

terials in the elastic and the transition to plastic regimes. These include the classical work
of Wilkins [3], and more recent approaches described in [9] as well as the overview pro-
vided in the recent paper [10] where the authors also discuss some of the disadvantages of
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the classical models. From a computational point of view, there is also a wide range of
discretization methods based on different elastic-plastic models. Such approaches include
Lagrangian staggered grid schemes [3, 11, 12], Eulerian methods [13, 14], free-Lagrange
methods [15], Lagrangian finite element [16] and cell centered methods [17, 10].

In this work, we focus on the classical hypoelastic approach of [3] which is based on an
incremental stress-strain relation in conjunction with the von Mises yield condition which is
discretized using the method of radial return for projecting the deviatoric stresses back onto
the yield surface. This results in an additional evolution equation for the stress deviator that
needs to be solved in conjunction with the conservation laws of (1)–(4).

The novelty of our approach lies in the use of a high order, curvilinear finite element dis-
cretization of the stress deviator evolution equation and its coupling with the corresponding
high order discretization of the conservation laws of (1)–(4). We achieve this by repre-
senting each component of the stress deviator, s, in the finite element space used for the
discretization of the thermodynamic variables. Using this representation, we then derive a
semi-discrete equation for the stress deviator evolution which we develop for 2D planar, 2D
axisymmetric and full 3D geometries. To ensure high order accuracy in the time integration
of the semi-discrete evolution equations, we apply high order, energy conserving, explicit
time stepping methods to develop the fully discrete method. We also introduce a general
approach for applying radial return to the stress deviator during each sub-stage of the high
order time integration methods.

The remainder of the paper is organized as follows. In Section 2 we recall some basic facts
about linear elastic and plastic material deformations. In Section 3 we describe the incre-
mental stress-strain relation that we use and define the deviatoric stress evolution equation.
In Section 4 we introduce finite element notation and develop a semi-discrete form of the
deviatoric stress evolution equation in 2D planar, 2D axisymmetric and full 3D geometries.
We also develop a general high order, explicit time discretization approach for integrating
this equation, along with the other semi-discrete conservation laws, in time. In Section 5,
we present an extensive set of numerical results that demonstrate the robustness of our al-
gorithm with respect to symmetry and energy conservation on a range of elastic-plastic test
problems. Finally, we summarize our experience and draw some conclusions in Section 6.

2. Linear Elastic and Plastic Deformation

Linear elastic materials resist change in shape, which is often referred to as a material’s
“strength.” Consider a volume of material with initial spatial coordinates x̃ and deformed
coordinates x. Define the displacement vector field as

u ≡ x− x̃.

In the limit of small displacements, the strain tensor is given by

ε ≡ 1

2
(∇u + u∇). (10)

The deviatoric strain tensor is defined as

E = ε− 1

3
Tr(ε)I = ε− 1

3
(∇ · u)I .
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For linear elastic materials, the constitutive relationship between the deviatoric stress tensor
and the deviatoric strain tensor is

s = 2µsE , (11)

where µs is the shear modulus (or modulus of rigidity) which can, in general, depend on
other state variables such as density and internal energy [18].

Certain solids, like many metals in a wide range of conditions, often behave essentially
as linear elastic materials unless the applied stress exceeds some critical value known as
the “yield stress” which is denoted Y . Above this threshold, materials become both non-
linear and non-elastic, leading to permanent deformation and sometimes material failure
(such as fracture). The term elastic-plastic is used to describe the state beyond which
further distortion results in plastic flow, in which no additional elastic energy is stored
and only plastic work is done. When the material is loaded beyond this state, which is
modeled with the yield stress, and subsequently unloaded, only the elastic distortion energy
is recovered; the work done during the plastic phase (and accumulated in the plastic strain)
is not recovered [19].

In order to determine if the applied stress is great enough to cause yielding, we use the
von Mises yield condition, which is based on the J2 invariant from (8). Specifically, the
condition is

J2 ≤ 1

3
Y 2 . (12)

This inequality defines the “yield surface” of a material. In the discretization of the elastic-
plastic equations this inequality can be enforced at a given time step using a process know
as radial return [3, 20] which we describe later.

3. Deviatoric Stress Evolution Equation

Once a material has transitioned from linear elastic to non-linear plastic flow, we can no
longer define a meaningful absolute strain relative to some initial configuration at time t = 0
via (10). Adopting a hypoelastic formulation, (11) can be modified to be in incremental form
as the relation between a stress rate and a strain rate [4]. In the limit of small displacements,
the strain rate tensor is given by

ε̇ ≡ 1

2
(∇v + v∇), (13)

and the deviatoric strain rate tensor is defined as

Ė = ε̇− 1

3
(∇ · v)I .

It is essential for the rate dependent elastic-plastic constitutive equation to be frame
invariant (or objective); however, frame invariance of the stress rate is not guaranteed even
if the strain rate is frame invariant [21]. Consider a general rotation process applied to the
stress deviator tensor

s′ = RsRT ,
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for some orthogonal matrix R such that RRT = I. Applying the material derivative to s′ to
get a stress rate, we obtain

ds′

dt
=

dR

dt
sRT + R

ds

dt
RT + Rs

dRT

dt
,

which means that
ds′

dt
6= R

ds

dt
RT

and the stress rate is not frame invariant unless the rate of rotation is zero, i.e. R is constant.
There are numerous frame invariant (or objective) stress rate formulations in the liter-

ature on continuum mechanics. The simplest, and perhaps the most commonly used is the
Jaumann rate, given by

s̊ ≡ ds

dt
+ (sω̇ − ω̇s), (14)

where, in the limit of small rotations, the rotation rate (or spin) tensor is given by

ω̇ ≡ 1

2
(∇v − v∇). (15)

Using the Jaumann stress rate definition of (14), we can write the deviatoric constitutive
relation of (11) in rate form as

ds

dt
= 2µsĖ − (sω̇ − ω̇s). (16)

In order to ensure that the deviatoric stress satisfies the plastic yield condition (12) we need
to additionally modify the above equation by subtracting the plastic strain rate ε̇p from the
deviatoric strain rate Ė, see [10]

ds

dt
= 2µs(Ė − ε̇p)− (sω̇ − ω̇s). (17)

The plastic strain rate ε̇p is defined as

ε̇p =

{
(ε̇ : s)/(s : s)s if J2 = Y 2/3 and ε̇ : s > 0,

0 otherwise.

Equation (17) represents the evolution equation for the deviatoric stress which will need
to be solved in conjunction with the conservation laws of (1)–(4). Alternatively, instead of
discretizing (17) in time, one may discretize (16) while performing a radial return step after
each time sub-step thus ensuring that the plastic yield condition (12) is always satisfied. In
our discrete algorithm we utilize the latter approach.

Whenever plastic yielding in a material occurs (ε̇p > 0), a permanent strain is accumu-
lated in the material. This permanent deformation can be measured by the equivalent plastic
strain (EPS) defined as

ε̄p =

∫ t

t0

√
2

3
(ε̇p : ε̇p) dt ,

which can be used to define work-hardening models for the yield stress: Y = Y (ε̄p).
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4. Finite Element Discretization

In this section we derive and discuss a finite element-based numerical approximation
scheme for the Euler equations (1)–(4) in the case of general elastic-plastic materials. The
presentation follows the general semi-discrete Lagrangian discretization method from [1] (and
[2] for the axisymmetric case), to which we refer for additional details.

4.1. Semi-Discrete Formulation

We first discuss the spatial approximation of the continuum equations giving rise to our
semi-discrete approximation method. The fully-discrete method, where we also discretize
the equations in time, will be presented in the following section.

We start from a finite element mesh on our computational domain Ω(t) at initial time
t = t0 consisting of zones (or elements) {Ωz(t0)}. To more accurately represent the naturally
developing curvature in the flow, we use high-order curvilinear zones which are described
through the locations of high-order particles (or control points) that are tracked by the
semi-discrete algorithm. Specifically, the current position at time t of a particle at an initial
position x̃ ∈ Ω̃ ≡ Ω(t0) is discretized using the expansion

x(x̃, t) ≈
NV∑
i=1

xi(t)wi(x̃) = x(t)Tw(x̃) , (18)

where x(t) is an unknown time-dependent vector of coefficients in the kinematic basis {wi}NV
i=1,

and w is a column vector of all the basis functions {wi}. The kinematic basis functions are
continuous and are used to discretize both the position and the velocity fields. This way,
the discrete velocity can be directly used to move the mesh and automatically satisfies the
equation of motion:

v(x̃, t) ≈
∑

i

dxi

dt
(t)wi(x̃) = v(t)Tw(x̃) , i.e. v =

dx

dt
. (19)

The curvilinear zones at time t are reconstructed as

Ωz(t) = {x = Φz(x̂, t) : x̂ ∈ Ω̂z} , (20)

where Φz is the parametric mapping from the reference element

Φz(x̂, t) =
Nv∑
i=1

xz,i(t) η̂i(x̂) . (21)

Here {η̂i}Nv
i=1 are the nodal finite element basis functions which are used to define the ba-

sis function {wi} through Cartesian products on the standard reference zone Ω̂z (the unit
square/cube in 2D/3D). The Jacobian of the parametric mapping is denoted by Jz = ∇x̂Φz.

We eliminate the density field from our numerical algorithm through the concept of strong
mass conservation (see [1]), which states that the total mass in any moving volume does not
change in time. This can be reduced to the equation

ρ(t)|Jz(t)| = ρ(t0)|Jz(t0)| , (22)
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which we assume to hold on the reference element at any time t.
To discretize the internal energy e and the components of the stress deviator tensor sij,

we introduce a thermodynamic finite element space with a basis {φi}NE
j=1. We then use the

finite element expansions

e(x̃, t) ≈
∑

i

ei(t)φi(x̃) , (23)

sij(x̃, t) ≈
∑

k

(sij)k(t)φk(x̃) , (24)

where e(t) and sij(t) are unknown time-dependent coefficient vectors. We choose a finite
element representation for the stress deviator components (as opposed to direct point-wise
evaluation), since the finite element functional representation fits more naturally in our
framework. We furthermore use the same discretization space for all non-kinematic un-
knowns, since this leads to several practical advantages, including reduced memory require-
ments and the possibility to reuse finite element components computed in the internal energy
update.

The functions φi are typically discontinuous and are of one order lower compared to the
kinematic space on the reference element, i.e. a typical pair of kinematic and thermodynamic
discretization spaces is Qk-Qk−1, k ≥ 1, corresponding to continuous wi with η̂i ∈ Qk and
discontinuous φi with φ̂i ∈ Qk−1. Note also that we treat all of the unknown fields as
functions varying within each zone: the position, velocity, internal energy and stress deviator
components are expanded as finite element fields, while the density and the pressure are
general (non-finite element) functions given by (22) and the EOS (5).

Our semi-discrete approximation of (1)–(4) is based on weak variational formulations
using the above kinematic and thermodynamic finite element spaces. The derivation is
similar to [1]: based on the kinematic and thermodynamic mass matrices

(MV)ij =

∫
Ω(t)

ρ wiwj and (ME)ij =

∫
Ω(t)

ρ φiφj , (25)

as well as the generalized force matrix

Fij =

∫
Ω(t)

(σ : ∇wi) φj , (26)

we define the following semi-discrete approximation to the Euler equations:

Semi-Discrete Momentum Conservation: MV
dv

dt
= −F · 1, (27)

Semi-Discrete Energy Conservation: ME
de

dt
= FT · v , (28)

Semi-Discrete Stress Rate: ME
dsij

dt
= gij, (29)

Semi-Discrete Equation of Motion:
dx

dt
= v. (30)
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Compared to [1], we have an additional equation for the components of the deviatoric stress,
which is based on a density-weighted projection of (16) onto the discontinuous thermody-
namic space:

(gij)k =

∫
Ω(t)

(ρgij) φk , (31)

where the stress deviator tensor rate function is defined using (16) as

g(s, v, µs) ≡ µs

(
(∇v + v∇)− 2

3
(∇ · v)I

)
− 1

2
(s(∇v − v∇)− (∇v − v∇)s) . (32)

The density-weighted projection (28) of the above stress deviator rate function is the most
natural way to define the stress rate in finite element terms. This particular choice has the
practical advantage that it allows us to reuse the thermodynamic mass matrix ME in the
stress deviator update.

Since the stress deviator tensor is symmetric, we only need to compute 6 independent
values in 3D (sxx, syy, szz, sxy, sxz, syz) and 3 independent values in 2D (sxx, syy, sxy). We
emphasize that s, v, µs and the velocity gradient ∇v are treated as functions that vary
inside of a zone and are evaluated at quadrature points in the integral definition of (31).
The stress deviator, s, in (32) is computed using the finite element representation of (24)
while the velocity gradient is computed by differentiating the expansion (19) with respect to
the physical coordinate x.

In the case of elastic-plastic flow, the von Mises yield condition (12) is enforced using
the following radial return procedure: given the stress deviator s and the equivalent plastic
strain ε̄p, we compute the stress measure

s̄ =
√

3J2 =

√
3

2
(s : s) ,

check if the yield condition is violated, i.e. s̄ > Y (ε̄p) and if so we update

s :=
s̄∗

s̄
s and ε̄p := ε̄p,∗ ,

where s̄∗ and ε̄p,∗ solve the equations

s̄∗ = Y (ε̄p,∗) and 3µs(ε̄
p,∗ − ε̄p) = s̄− s̄∗ .

We discretize the EPS, ε̄p, using a finite element expansion in the thermodynamic basis {φi}:
ε̄p =

∑
k ε̄p

kφk. This allows us to apply the above radial return algorithm independently to
each of the degrees of freedom (sij)k and ε̄p

k of the deviatoric stress and EPS. If done in
an appropriate basis (e.g. Bernstein polynomials) this can ensure that the matrix function
s satisfies the constraint (12) at every point inside a zone. In practice, the approximation
of the von Mises yield condition is good enough even when the rescaling is done in a more
traditional Gauss-Legendre basis in which case (12) is only guaranteed at the Gauss-Legendre
points in a zone.

The total stress is given by
σ = −pI + s + σa ,
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where σa is the stress due to artificial viscosity. The evaluation of this stress in the generalized
force matrix integral of (26) is the main computational kernel of our method. Specifically, the
matrix F from (26) and the vector g from (31) can be assembled from zonal contributions:

F = Assemble(Fz) , g = Assemble(gz) .

Note that the local rectangular force matrix Fz is the high-order generalization of the “corner
force” concept described in [22].

Evaluating Fz and gz is a locally FLOP-intensive process based on transforming each
zone back to the reference element where we apply a quadrature rule with points {q̂k} and
weights {αk}:

(Fz)ij ≈
∑

k

αk σ̂(q̂k) : J−1
z (q̂k)∇̂ŵi(q̂k) φ̂j(q̂k)| detJz(q̂k)| ,

(gz)j ≈
∑

k

αk ρ̂(q̂k)ĝ(q̂k)φ̂j(q̂k)| detJz(q̂k)| ,

where the “hat” symbol indicates definition with respect to the reference coordinate system.
We aim to integrate (26) and (31) accurately using a quadrature rule of higher order com-
pared to the degrees of freedom in the finite element spaces. For example, we use a 16-point
Gaussian quadrature rule for the corner force computation for the 2D Q2-Q1 method, where
the velocity and internal energy have 18 and 4 degrees of freedom in each zone, respectively.

4.2. Fully-Discrete Formulation

Our fully discrete elastic-plastic formulation simply treats the semi-discrete equations
from the previous section as a general system of non-linear ODEs, similar to [1].

Specifically, let Y = (v, e, s,x). Then the semi-discrete equations can be written in the
form:

dY

dt
= F(Y, t) ,

where

F(Y, t) =


Fv(v, e, s,x)
Fe(v, e, s,x)
Fx(v, e, s,x)
Fs(v, e, s,x)

 =


−M−1

V F · 1
M−1

E FT · v
M−1

E g
v

 .

To solve the above system of ODEs, we use standard high order explicit Runge-Kutta time
integration methods, where we incorporate the radial return procedure as a post-processing
step after each Runge-Kutta stage. In the strong-stability preserving versions of the methods,
e.g. RK3SSP, we can perform the rescaling on the Euler sub-step instead of the overall result
from each stage.
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4.3. The RK2-Average Scheme with Radial Return

As an example, we consider a modified two stage Runge-Kutta method which we refer to
as the RK2-Average method. For the case of elastic-plastic flow, its two stages are given by

vn+ 1
2 = vn − (∆t/2)M−1

V Fn · 1 vn+1 = vn −∆tM−1
V Fn+ 1

2 · 1
en+ 1

2 = en + (∆t/2)M−1
E (Fn)T · vn+ 1

2 en+1 = en + ∆tM−1
E (Fn+ 1

2 )T · v̄n+ 1
2

sn+ 1
2 = sn + (∆t/2)M−1

E gn sn+1 = sn + ∆tM−1
E gn+ 1

2

sn+ 1
2 = RadialReturn(sn+ 1

2 ) sn+1 = RadialReturn(sn+1)

xn+ 1
2 = xn + (∆t/2)vn+ 1

2 xn+1 = xn + ∆t v̄n+ 1
2 ,

where Fk = F(Yk), gk = g(Yk) and v̄n+ 1
2 = (vn +vn+1)/2. To track the EPS in this case, we

need one additional vector ε̄p, which is updated only inside the RadialReturn procedure.

4.4. Axisymmetric Formulation

In this section we consider the modifications needed for problems where axial symmetry
allows the reduction of a 3D simulation on Ω(t) to a computation in a 2D meridian cut Γ(t).

Following [2], we introduce the axisymmetric mass matrices

(Mrz
V )ij =

∫
Γ(t)

rρ wiwj and (Mrz
E )ij =

∫
Γ(t)

rρ φiφj , (33)

as well as the generalized axisymmetric force matrix

Frz
ij =

∫
Γ(t)

r (σrz : ∇rzwi) φj , (34)

where we recall that in z − r − θ cylindrical coordinates

∇rzv =

∂vz

∂z
∂vz

∂r
0

∂vr

∂z
∂vr

∂r
0

0 0 vr

r

 =

(
∇2dv 0

0 vr

r

)
, ∇rz · v =

∂vz

∂z
+

∂vr

∂r
+

vr

r
= ∇2d · v +

vr

r
,

and
σrz : ∇rzv = σ2d : ∇2dv + σθθ

vr

r
.

Due to the axial symmetry, the stress deviator tensor has the form

s =

szz szr 0
srz srr 0
0 0 sθθ


z−r−θ

=

(
s2d 0
0 sθθ

)

with szr = srz and sθθ = −(szz + srr) since s is symmetric and traceless. The semi-discrete
stress deviator rate equation then is

ds2d

dt
= grz ≡ µs

(
(∇2dv + v∇2d)−

2

3
(∇rz · v)I2d

)
− s2d(∇2dv − v∇2d)− (∇2dv − v∇2d)s2d

2
.
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Note that we do not need to keep track of sθθ, since s is traceless and, in particular, the J2
invariant can be computed directly:

J2 =
1

2
Tr(s2) = s2

zz + szzsrr + s2
rr + s2

rz .

Putting all of these together, we get the following semi-discrete approximation to the
Euler equations in the axisymmetric case:

Semi-Discrete Momentum Conservation: Mrz
V

dv

dt
= −Frz · 1, (35)

Semi-Discrete Energy Conservation: Mrz
E

de

dt
= (Frz)T · v , (36)

Semi-Discrete Stress Rate: Mrz
E

dsij

dt
= grz

ij , (37)

Semi-Discrete Equation of Motion:
dx

dt
= v. (38)

We have 3 unknown fields for the stress rate, szz, srr and srz, and the stress deviator rate is
again based on a density-weighted projection, this time reduced to the meridian cut:

(grz
ij )k =

∫
Γ(t)

rρ (grz)ij φk.

As in the Cartesian case, we apply radial return to the degrees of freedom of s after the
computation in (37).

5. Numerical Results

We now present a series of numerical results using various high-order methods corre-
sponding to specific choices for the finite element spaces describing the kinematic variables
of position x and velocity v, and the thermodynamic variables e and s. We designate each
method using the notation Qk-Qk−1 (for quadrilateral / hexahedral meshes) as described in
[1]. We consider both traditional h-refinement (or mesh refinement) as well as p-refinement
where we keep the mesh fixed while increasing the order of the method.

For all test cases considered, we solve the global linear system for momentum conservation
using a diagonally scaled conjugate gradient algorithm to a residual tolerance of 10−10 and
we use the type 4 artificial viscosity from [1]. Unless otherwise specified, we use artificial
viscosity coefficients q1 = 1/10 and q2 = 2. Unless explicitly given, all physical units in this
section are based on the (cm, g, µs) unit system, which means velocities are in cm

µs
, densities

are in g
cm3 and stresses are in Mbar. In most cases, we make use of a Grüneisen equation of

state of the form

p(µ, e) =
ρ0C

2
0µ

(
1 +

(
1− γ0

2

)
µ− b

2
µ2

)
1− (S1 − 1)µ

+ (γ0 + bµ)ρ0e; µ ≡ ρ

ρ0

− 1 , (39)

see [23] for further details. The results in this section have been computed with our high-
order finite element hydrocode BLAST [24], which is based on the parallel modular finite
element methods library MFEM [25].
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5.1. Elastic Wave Propagation with Non-Linear EOS

In this simple test problem, we consider the 1D propagation of an elastic wave in a
material characterized by a non-linear equation of state. In particular, the EOS has the
form

p(µ, e) = µ + µ2 + µ3 +
(
1 + µ + µ2

) e

ρ0

; µ ≡ ρ

ρ0

− 1 .

The goal of this problem is to verify the order of accuracy for the time integration of the
semi-discrete stress rate evolution equation (as well as the other semi-discrete conservation
laws) and was originally developed by [26]. The computational domain is a simple 1D mesh
with x ∈ [0, 1], and ∆x = 1/16. The mesh has finite dimension in y, with y ∈ [0, 0.1] and
∆y = 1/10 (a single zone in y). The mesh is filled with a material with ρ0 = 1 and e0 = 0.
The material has a shear modulus µs = 1, and an effectively “infinite” yield stress Y = 1010

to eliminate plasticity effects. The x-component of the velocity is initialized with

vx = 0.01 sin(πx) .

The diagnostic is the value of the x-component of the velocity at a Lagrangian “tracer”
point in the mesh with an initial location of x = 1/4, at a final time of t = 0.3. Since
this problem is smooth we run without any artificial viscosity. We perform a sequence of 4
calculations with fixed time steps of ∆t = 1/400, 1/800, 1/1600 and 1/3200 using a Q2-Q1

spatial discretization. The temporal error of the diagnostic is measured for each calculation
at the final time t = 0.3 with respect to a reference calculation performed with a time step
of ∆t = 1/12800. We are therefore checking the self-convergence of our methods.

The results of this test are summarized in Table 1 and plotted in Figure 1. For each
time integration method, we achieve the theoretical rates of first, second, third and fourth
order error convergence in time, even for the case of a non-linear EOS. We point out that
this is only possible by evaluating the hydrodynamic state variables (including the EOS and
the stress rate) at each step of the multi-stage time integrator. To our knowledge, there is
no method which can achieve 2nd order (or greater) convergence on this test that does not
evaluate the EOS and stress rate at each sub-stage of the time integration.

Table 1: Temporal errors |vx − vref
x | for Lagrangian tracer point at a final time of t = 0.3 for the 1D elastic

wave test problem using a sequence of fixed time steps and four different explicit time integration methods.

Method ∆t = 1/400 ∆t = 1/800 ∆t = 1/1600 ∆t = 1/3200

Order 1: EulerAvg 2.1125e-04 8.6947e-06 4.3328e-06 2.1656e-06
Order 2: RK2Avg 2.2392e-07 5.4413e-08 1.3434e-08 3.3391e-09
Order 3: RK3SSP 1.4639e-08 1.6607e-09 1.9519e-10 2.3660e-11
Order 4: RK4 8.1659e-10 4.9890e-11 3.0400e-12 1.8000e-13

5.2. Bazan Elastic-Plastic Shock Wave

Here we consider a 1D flyer impact problem which generates an elastic-plastic shock wave;
a two shock state with an elastic precursor shock followed by a plastic shock. The analytic
solution to this test problem was developed by [27]. The problem geometry is a 2D (r, z)
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Figure 1: Error convergence in time for simple 1D elastic wave test problem using four different time
integration methods.

cylindrical domain with r ∈ [0, 0.1] and z ∈ [0, 1]. The domain consists of two pieces of a
vanadium like material, separated by a contact at z = 0.5. The initial conditions for the left
and right sates are:

vz =

{
0.060281 z ≤ 0.5
0 z > 0.5

, ρ =

{
6.1 z ≤ 0.5
6.1 z > 0.5

, e =

{
0 z ≤ 0.5
0 z > 0.5

.

The material has a shear modulus µs = 0.481, a yield stress Y = 0.025 and obeys a simplified
form of the Grüneisen EOS of (39) with coefficients C0 = 0.5077, S1 = 1.201 and all other
coefficients with zero value. We run the problem to a final time of t = 0.5. In each case
below, we use the energy conserving RK2-Average time integrator.

5.2.1. 1D Results

Here we compare results on a 1D mesh consisting of a single zone in the radial direction.
We consider a testing matrix based on h- and p-refinement of the problem as shown in Table
2 and focus on three cases:

1. A fixed number of spatial degrees of freedom for each case.

2. h-refinement using the Q2-Q1 spatial method.

3. p-refinement using the ∆x = 1/200 mesh.

In Figure 2 we compare results for the velocity, density and the components of the stress
deviator tensor using two different high order methods, each with an identical number of
kinematic and thermodynamic degrees of freedom. This is accomplished by de-refining the
mesh one level for every doubling of the order of the kinematic space. When plotting high-
order field data, sub-zonal sampling of the solution is critical for capturing the sub-zonal

13



Table 2: Summary of h- and p-refinement cases for the 1D elastic-plastic shock wave problem.
Spatial Order Base Mesh 1st Refinement 2nd Refinement

Q2-Q1 ∆x = 1/200 ∆x = 1/400 ∆x = 1/800

Q4-Q3 ∆x = 1/200 – –

Q8-Q7 ∆x = 1/200 – –

resolution of the fields. For our baseline Q2-Q1 method, we sample the field at 4 points
per zone (in one dimension) and we double this number for every doubling of the spatial
approximation order. The stress deviator components do not exceed their threshold values
due to the radial return process, but we do observe spurious behavior at the material contact
due to the wall heating effect. Furthermore, the low order method on the fine mesh yields
essentially the same result as the high-order method on the coarse mesh.

In Figure 3 and Figure 4 we show zoomed in views of the velocity and density fields around
one of the shocks and compare results for both h-refinement (keeping the approximation
order fixed and doubling the mesh resolution) and p-refinement (keeping the mesh fixed and
doubling the approximation order). For both h- and p-refinement strategies, we observe
convergence to the exact solution, see Figure 5. Both refinement strategies give virtually
identical errors for the same number of degrees of freedom, e.g. (h = 1/800, p = 2) vs (h =
1/200, p = 8) due to the discontinuous nature of the analytic solution. While higher-order
methods (p-refinement) do not provide an accuracy advantage for discontinuous solutions in
this case, we will demonstrate their superiority in symmetry preservation in Section 5.3.1.

5.2.2. 2D (r, z) Results on Unstructured Mesh

In this section we discuss the results from the axisymmetric formulation on a 2D, highly
unstructured mesh. In Figure 6 we compare results for the velocity, density and the com-
ponents of the stress deviator tensor using two different high order methods, each with an
identical number of kinematic and thermodynamic degrees of freedom. For 2D meshes, we
sample the fields at 16 points per zone for the Q2-Q1 method and 64 points per zone for the
Q4-Q3 method. Note the degree to which the 1D symmetry of the velocity and density is
preserved in both cases, even on the unstructured 2D mesh. In this case, we observe that the
stress deviator components do exceed their threshold values and the spurious behavior at
the material contact due to the wall heating effect is more pronounced, although the effect
is diminished for the Q4-Q3 method. In Figure 7 we show pseudocolor plots of the density
field along with the computational mesh, zoomed in around one of the shocks. Note the sub-
zonal resolution of both the elastic precursor and plastic shock waves on the unstructured
2D mesh.

5.3. Spherical Shell Collapse

In this test problem we consider the collapse of a spherical shell of beryllium given an
initial inwardly directed radial velocity profile. The initial kinetic energy of the shell is
converted to internal energy via plastic work as the shell collapses. During this process,
the shell thickens and eventually stops once the initial kinetic energy has been completely

14



Figure 2: Scatter plots of velocity (top-left), density (top-right) and stress deviator components (bottom)
versus distance for the 1D elastic-plastic shock wave problem using a Q2-Q1 method on a 400 zone mesh
with 4 plot points per zone and a Q4-Q3 method on a 200 zone mesh with 8 plot points per zone.

dissipated. The analytic values for the inner and outer stopping radii of the shell have been
developed for the case of 1D cylindrical and spherical symmetries, assuming incompressible,
elastic, perfectly plastic flow [28, 15, 29].

We consider a spherical shell with an inner radius of 8 and a thickness of 2. We use the
Grüneisen EOS of (39) with coefficients C0 = 1.287,S1 = 1.124, γ0 = 1.11, ρ0 = 1.84 and all
other coefficients with zero value. We use an elastic, perfectly plastic strength model with a
shear modulus µs = 1.51 and a yield stress Y = 0.0033. The velocity of the shell is initialized
as

v(r) = −v0

(
Ri

r

)2

r̂ ,

where Ri is the initial inner radius of the shell and r̂ is a unit radial vector. The initial velocity
magnitude is chosen as v0 = 0.0675306 which gives a final outer stopping radius ro = 8.0156
and a final inner stopping radius of ri = 3.0 as shown in [29, 13]. We run the problem to
a final time of t = 102, and in this example, we use a value of q1 = 1/20 for the artificial
viscosity. In each case below, we use the energy conserving RK2-Average time integrator.
As stated in [15], the figures of merit for numerical solutions to this problem are (i) the
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Figure 3: Scatter plots of velocity (left) and density (right) versus distance zoomed in around one of the
shocks, using a Q2-Q1 method with h-refinement and 4 plot points per zone.

Figure 4: Scatter plots of velocity (left) and density (right) versus distance zoomed in around one of the
shocks, using a 200 zone mesh with p-refinement and 4, 8 and 16 plot points per zone.

method accurately predicts the inner and outer stopping radii and (ii) the computational
mesh maintains spherical symmetry.

5.3.1. 2D (r, z) Results: p-Refinement on Smoothly Perturbed Mesh

First, we consider a 2D (r, z) axisymmetric version of this problem. To emphasize the
symmetry preserving benefits of high order methods, we apply a smooth perturbation to the
computational mesh to break its radial symmetry. The perturbation is first applied to the
y-coordinates of a 16 by 16 mesh of the unit square of the form:

∆y = 0.1 cos(6πx),

y =

{
y + 2y∆y, y < 0.5
y + 2(1− y)∆y, y ≥ 0.5

.

The perturbed unit square is then mapped to an annulus with the specified inner and outer
radii as depicted in Figure 8.
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Figure 5: Convergence rates for the 1D elastic-plastic shock wave problem using h-refinement (left) and
p-refinement (right).

We consider p-refinement on the perturbed 2D mesh, using a sequence of successively
higher order methods. In Figure 9, we show pseudocolor plots of the internal energy field
and the curvilinear mesh at the final stopping time of t = 102 using Q2-Q1, Q4-Q3 and Q8-Q7

methods with 16, 64 and 256 plot points per zone respectively. Note the curvature of the
meshes as well as the sub-zonal resolution of the internal energy field. For the lowest order
method, the inner radius has noticeable symmetry breaking, while the higher order methods
do not break symmetry (this is further quantified in Figure 11 and Figure 12).

In Figure 10 we plot the total, kinetic and internal energies of the problem for each
method. For each calculation, the total energy was conserved to machine precision via the
energy conserving RK2-Average time integration method. As the order of the method is
increased, we observe convergence in the evolution of the kinetic and internal energies as the
initial kinetic energy is completely dissipated via plastic work at the final stopping time. In
Figure 11 we plot the average values of the inner and outer radii as a function of time and
compare the calculated stopping radii to the analytic values. As the order of the method is
increased, the average outer and inner radial values converge to the analytic values at the
final stopping time, as seen in Figure 12. In Figure 11 we also plot the normalized standard
deviation of the radial surfaces which indicates the percent symmetry error over time. The
symmetry error in both the outer and inner radial interfaces decreases substantially under p-
refinement (see Figure 12) and the final symmetry error for the inner radius is less than 10−5

percent for the Q8-Q7 method on the initially perturbed mesh. Contrast the convergence
rate for p-refinement with that of h-refinement as shown in the next section.

5.3.2. 3D Results: h-Refinement on Unstructured Mesh

Here we consider a full 3D treatment of the problem. In this case we compare results
obtained using a Q2-Q1 method on a sequence of refined 3D unstructured meshes to verify
spatial convergence with respect to mesh refinement. In Figure 13, we show pseudocolor plots
of the internal energy field and the curvilinear mesh at the final stopping time of t = 102 on
a very coarse unstructured mesh with 4 angular zones in the θ and φ directions and 8 radial
zones, as well as two uniformly refined version of the same mesh. For these 3D examples, we
sample the solutions using a lattice of 43 points for each zone. Note the spherical curvature
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Figure 6: Scatter plots of velocity (top-left), density (top-right) and stress deviator components (bottom)
versus distance for the 2D (r, z) elastic-plastic shock wave problem using a Q2-Q1 method on a refined
unstructured mesh with 16 plot points per zone and a Q4-Q3 method on a coarse unstructured mesh with
64 plot points per zone.

of the radial interfaces, even on the coarsest mesh.
In Figure 14 we plot the total, kinetic and internal energies of the problem for each mesh.

Again, for each calculation, the total energy was conserved to machine precision. As the
mesh is refined, we observe convergence in the evolution of the kinetic and internal energies
as the initial kinetic energy is completely dissipated via plastic work at the final stopping
time. In Figure 15 we plot the average values of the inner and outer radii as a function
of time and compare the calculated stopping radii to the analytic values. As the mesh is
refined, the average outer and inner radial values converge to the analytic values at the final
stopping time. In Figure 15 we also plot the normalized standard deviation of the radial
surfaces which indicates the symmetry error over time. Here we are sampling the symmetry
error at 16 points per face. The symmetry error in both the outer and inner radial interfaces
is decreasing under mesh refinement as shown in Figure 16, however, the rate is substantially
less for traditional h-refinement when compared to the p-refinement results of Section 5.3.1.
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Figure 7: Pseudocolor plots of density and mesh for the 2D (r, z) elastic-plastic shock wave problem, zoomed
in around one of the shocks, using a Q2-Q1 method on a refined unstructured mesh with 16 plot points per
zone (left) and a Q4-Q3 method on a coarse unstructured mesh with 64 plot points per zone (right).

7−→

Figure 8: A smoothly perturbed 16 by 16 Q2 mesh of the unit square is transformed to an annulus.

5.4. High Velocity Impact Problems

Here we consider two different problems where a metal projectile impacts a rigid wall at
high velocity resulting in significant plastic deformation and Lagrangian mesh motion.

5.4.1. 2D Planar Impact

First, we consider a simple 2D planar impact of an aluminum projectile against a rigid
wall, as described in [17, 10]. The initial projectile is a rectangular plate of length l = 500 and
thickness h = 100. We use the Grüneisen EOS from (39) for the aluminum with ρ0 = 2.785,
C0 = 0.5328, S1 = 1.338, γ0 = 2.0 and all other coefficients with zero value. We use an
elastic, perfectly plastic strength model with a shear modulus µs = 0.276 and a yield stress
Y = 0.003. The velocity of the projectile is initialized in the negative x-direction with a
magnitude of 0.015. In this example, we use a Q4-Q3 method on a sequence of refined 2D
meshes of the domain [0, 500] × [−50, 50]. In Figure 17 we plot the plasticity threshold

map (defined as
√

3
2
(s : s)/Y ), an indicator of where the material has exceeded the plastic
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Figure 9: Pseudocolor plots of internal energy and curvilinear mesh for the 2D (r, z) spherical shell collapse
problem, on a smoothly perturbed 16 by 16 2D mesh sing using a Q2-Q1, Q4-Q3 and a Q8-Q7 method (left
to right) with 16, 64 and 256 plot points per zone respectively.

yield limit, for the medium resolution mesh. In Figure 18 we plot the total, kinetic and
internal energies of the problem for each mesh. As with previous examples, the plots suggest
convergence in the evolution of the kinetic and internal energies as the initial kinetic energy
is completely dissipated via plastic work.

5.4.2. 3D Taylor Impact

Finally, we consider a 3D impact of a cylindrical copper rod against a rigid wall, as
described in [16, 14]. The initial projectile is a cylindrical rod of length l = 3.24 and radius
r = 0.32. We use the Grüneisen EOS of (39) for the copper with coefficients C0 = 0.361966,
S1 = 1.489, γ0 = 2.02, b = 0.47, and ρ0 = 8.93. We use an elastic, linearly plastic strength
model with a shear modulus µs = 0.43333, initial yield stress of Y0 = 0.004 and a linear
work hardening modulus Ywh = 0.001, i.e. Y (ε̄p) = Y0 + Ywhε̄

p. The velocity of the projectile
is initialized in the positive x-direction with a magnitude of 0.0227. In this example, we use
both a 2D (r, z) Q4-Q3 method and a full 3D Q4-Q3 method on an unstructured, curvilinear
cylindrical mesh. Using Q4-Q3 finite elements gives 25 kinematic degrees of freedom per zone
for the 2D case and 125 kinematic degrees of freedom per zone for the 3D case. In Figure
19 we plot the equivalent plastic strain and curvilinear meshes for both the 2D (r, z) and
3D methods. In Figure 20 we plot the total, kinetic and internal energies of the problem
for each mesh, where for both cases, total energy was conserved to machine precision. The
agreement between the 2D (r, z) and 3D calculations, summarized in Table 3, is very good
and can be compared to the results from [16, 14, 30].

Table 3: Summary of final results at time t = 80 for the Taylor impact problem using 2D (r, z) and full 3D
Q4-Q3 methods.

Method Final Length Max. Radius Max. EPS 50% Kinetic Energy Time

2D (r, z) 2.1738 0.6742 4.20 25.102
3D 2.1739 0.6741 4.19 25.099

20



Figure 10: Total, kinetic and internal energies vs. time for the 2D (r, z) spherical shell collapse problem on
a smoothly perturbed 16 by 16 2D mesh with p-refinement.

6. Conclusions

We have presented an extension of our high-order curvilinear finite element method for
solving the equations of compressible hydrodynamics in a Lagrangian frame to the case of
elastic-plastic material dynamics. This was achieved by augmenting the semi-discrete con-
servation equations with an additional equation for the deviatoric stress which is discretized
using a density weighted L2 projection on the thermodynamic basis. The fully discrete
conservation laws, including the stress deviator evolution equation, are solved using explicit
high-order Runge-Kutta methods and radial return is applied to the deviatoric stress degrees
of freedom at each sub-stage. We demonstrated convergence of our method using both h-
and p-refinement strategies on multiple test problems. We also demonstrated via numerical
examples the benefits of using high order curvilinear finite elements in this context, includ-
ing: improved symmetry preservation for non-uniform and unstructured meshes, the ability
to more accurately capture the geometry of the flow and maintain robustness with respect to
mesh motion using curvilinear zones and sharper resolution of a shock front for a given mesh
resolution including the ability to resolve both elastic and plastic shocks at the sub-zone
level.
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Figure 11: Average interface radii vs. time (left) and percent symmetry errors vs. time (right) for the 2D
(r, z) spherical shell collapse problem on a smoothly perturbed 16 by 16 2D mesh with p-refinement.
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Figure 12: Convergence rates for the average radii (left) and percent symmetry errors (right) at the final
time for the 2D (r, z) spherical shell collapse problem on a smoothly perturbed 16 by 16 2D mesh with
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Figure 15: Average interface radii vs. time (left) and percent symmetry errors vs. time (right) for the 3D
spherical shell collapse problem using a Q2-Q1 method on a sequence of refined meshes.
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Figure 17: Pseudocolor plot of plasticity threshold and curvilinear mesh for the 2D impact problem on a 40
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Figure 18: Total, kinetic and internal energies vs. time for the 2D impact problem using a Q4-Q3 method
on a sequence of refined meshes.
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Figure 19: Pseudocolor plot of equivalent plastic strain and curvilinear mesh for the Taylor impact problem
using a 2D (r, z) Q4-Q3 method (top) and a 3D Q4-Q3 method (bottom) at time t = 80.
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Figure 20: Total, kinetic and internal energies vs. time for the Taylor impact problem using a 2D (r, z)
Q4-Q3 method and a 3D Q4-Q3 method.
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